1,502 research outputs found

    A New Approach to Antitrust Law: Transparency

    Get PDF
    The following is a transcript of a 2018 Federalist Society panel entitled Technology, Social Media, and Professional Ethics. The panel originally occurred on November 15, 2018 during the National Lawyers Convention in Washington, D.C. The panelists were: Hon. Frank Easterbrook, United States Court of Appeals, Seventh Circuit; Deborah Garza, Partner, Covington & Burling LLP; Eric Grannon, Partner, White & Case; and Douglas Melamed, Professor of the Practice of Law, Stanford Law School. The moderator was the Honorable John B. Nalbandian of the United States Court of Appeals for the Sixth Circuit

    National Mesothelioma Virtual Bank: A standard based biospecimen and clinical data resource to enhance translational research

    Get PDF
    Background: Advances in translational research have led to the need for well characterized biospecimens for research. The National Mesothelioma Virtual Bank is an initiative which collects annotated datasets relevant to human mesothelioma to develop an enterprising biospecimen resource to fulfill researchers' need. Methods: The National Mesothelioma Virtual Bank architecture is based on three major components: (a) common data elements (based on College of American Pathologists protocol and National North American Association of Central Cancer Registries standards), (b) clinical and epidemiologic data annotation, and (c) data query tools. These tools work interoperably to standardize the entire process of annotation. The National Mesothelioma Virtual Bank tool is based upon the caTISSUE Clinical Annotation Engine, developed by the University of Pittsburgh in cooperation with the Cancer Biomedical Informatics Gridℱ (caBIGℱ, see http://cabig.nci.nih.gov). This application provides a web-based system for annotating, importing and searching mesothelioma cases. The underlying information model is constructed utilizing Unified Modeling Language class diagrams, hierarchical relationships and Enterprise Architect software. Result: The database provides researchers real-time access to richly annotated specimens and integral information related to mesothelioma. The data disclosed is tightly regulated depending upon users' authorization and depending on the participating institute that is amenable to the local Institutional Review Board and regulation committee reviews. Conclusion: The National Mesothelioma Virtual Bank currently has over 600 annotated cases available for researchers that include paraffin embedded tissues, tissue microarrays, serum and genomic DNA. The National Mesothelioma Virtual Bank is a virtual biospecimen registry with robust translational biomedical informatics support to facilitate basic science, clinical, and translational research. Furthermore, it protects patient privacy by disclosing only de-identified datasets to assure that biospecimens can be made accessible to researchers. © 2008 Amin et al; licensee BioMed Central Ltd

    Blood-Brain Barrier Breakdown in a Single Post-stroke Rodent Brain

    Get PDF
    Stroke is a major cause of global morbidity and mortality. Middle cerebral artery occlusion (MCAO) has historically been the most common animal model of simulating ischemic stroke. The extent of neurological injury after MCAO is typically measured by cerebral edema, infarct zone, and blood-brain barrier (BBB) permeability. A significant limitation of these methods is that separate sets of brains must be used for each measurement. Here we examine an alternative method of measuring cerebral edema, infarct zone and BBB permeability following MCAO in the same set of brain samples. Ninety-six rats were randomly divided into three experimental groups. Group 1 (n = 27) was used for the evaluation of infarct zone and brain edema in rats post-MCAO (n = 17) vs. sham-operated controls (n = 10). Group 2 (n = 27) was used for the evaluation of BBB breakdown in rats post-MCAO (n = 15) vs. sham-operated controls (n = 10). In Group 3 (n = 42), all three parameters were measured in the same set of brain slices in rats post-MCAO (n = 26) vs. sham-operated controls (n = 16). The effect of Evans blue on the accuracy of measuring infarct zone by 2,3,5-triphenyltetrazolium chloride (TTC) staining was determined by measuring infarct zone with and without an applied blue filter. The effects of various concentrations of TTC (0, 0.05, 0.35, 0.5, 1, and 2%) on the accuracy of measuring BBB permeability was also assessed. There was an increase in infarct volume (p < 0.01), brain edema (p < 0.01) and BBB breakdown (p < 0.01) in rats following MCAO compared to sham-operated controls, whether measured separately or together in the same set of brain samples. Evans blue had an effect on measuring infarct volume that was minimized by the application of a blue filter on scanned brain slices. There was no difference in the Evans blue extravasation index for the brain tissue samples without TTC compared to brain tissue samples incubated in TTC. Our results demonstrate that measuring cerebral edema, infarct zone and BBB permeability following MCAO can accurately be measured in the same set of brain samples

    The Evaporating Massive Embedded Stellar Cluster IRS 13 Close to Sgr A*. I. Detection of a rich population of dusty objects in the IRS 13 cluster

    Full text link
    A detailed analysis of the Nuclear Stellar Cluster (NSC) concedes not only the existence of the Scluster with its fast-moving stars and the supermassive black hole (SMBH) Sgr A*. It also reveals an embedded region of gas and dust with an exceptionally high stellar density called IRS 13. The IRS 13 cluster can be divided into the northern and the eastern counterparts, called IRS 13N and IRS 13E, respectively. This work will focus on both regions and study their most prominent members using rich infrared and radio/submm data baselines. Applying a multiwavelength analysis enables us to determine a comprehensive photometric footprint of the investigated cluster sample. Using the raytracing-based radiative transfer model HYPERION, the spectral energy distribution of the IRS 13 members suggests a stellar nature of the dusty sources. These putative Young Stellar Objects (YSOs) have a comparable spectroscopic identification to the D and G sources in or near the S cluster. Furthermore, we report the existence of a population of dusty sources in IRS 13 that can be mostly identified in the H-, K-, and Lband. Together with the objects reported in literature, we propose that this population is the outcome of a recent star formation process. Furthermore, we report that these presumably young objects are arranged in a disk structure. Although it cannot be excluded that the intrinsic arrangement of IRS 13 does show a disk structure, we find indications that the investigated cluster sample might be related to the counterclockwise disk.Comment: 59 pages, 44 figures, accepted and published by the Ap

    French-English Terminology Extraction from Comparable Corpora

    Full text link

    Plasmonically Enhanced Reflectance of Heat Radiation from Low-Bandgap Semiconductor Microinclusions

    Get PDF
    Increased reflectance from the inclusion of highly scattering particles at low volume fractions in an insulating dielectric offers a promising way to reduce radiative thermal losses at high temperatures. Here, we investigate plasmonic resonance driven enhanced scattering from microinclusions of low-bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating composite to tailor its infrared reflectance for minimizing thermal losses from radiative transfer. To this end, we compute the spectral properties of the microcomposites using Monte Carlo modeling and compare them with results from Fresnel equations. The role of particle size-dependent Mie scattering and absorption efficiencies, and, scattering anisotropy are studied to identify the optimal microinclusion size and material parameters for maximizing the reflectance of the thermal radiation. For composites with Si and Ge microinclusions we obtain reflectance efficiencies of 57 - 65% for the incident blackbody radiation from sources at temperatures in the range 400 - 1600 {\deg}C. Furthermore, we observe a broadbanding of the reflectance spectra from the plasmonic resonances due to charge carriers generated from defect states within the semiconductor bandgap. Our results thus open up the possibility of developing efficient high-temperature thermal insulators through use of the low-bandgap semiconductor microinclusions in insulating dielectrics.Comment: Main article (8 Figures and 2 Tables) + Supporting Information (8 Figures

    Non-Equilibrium Statistical Physics of Currents in Queuing Networks

    Get PDF
    We consider a stable open queuing network as a steady non-equilibrium system of interacting particles. The network is completely specified by its underlying graphical structure, type of interaction at each node, and the Markovian transition rates between nodes. For such systems, we ask the question ``What is the most likely way for large currents to accumulate over time in a network ?'', where time is large compared to the system correlation time scale. We identify two interesting regimes. In the first regime, in which the accumulation of currents over time exceeds the expected value by a small to moderate amount (moderate large deviation), we find that the large-deviation distribution of currents is universal (independent of the interaction details), and there is no long-time and averaged over time accumulation of particles (condensation) at any nodes. In the second regime, in which the accumulation of currents over time exceeds the expected value by a large amount (severe large deviation), we find that the large-deviation current distribution is sensitive to interaction details, and there is a long-time accumulation of particles (condensation) at some nodes. The transition between the two regimes can be described as a dynamical second order phase transition. We illustrate these ideas using the simple, yet non-trivial, example of a single node with feedback.Comment: 26 pages, 5 figure
    • 

    corecore